

Norwegian University of Science and Technology

Calibration of partial factor design formats

Best practice and challenge

Jochen Köhler

28.10.2020

Norwegian University of Science and Technology, Trondheim, Norway

Context and Information

INFRASTAR Training s	CHOOL 16 SCHOOLS - RESOURCES AND DOWNLOADS - REGISTRATION AND FEES ABOUT NANTES
RESTRICTED AREA -	
Home / Restricted area / 2nd Infrastar Training S	chool
2ND INFRASTAR TRAINING SCHOOL	2nd Infrastar Training School
	All the materials are copyrighted. In case you would like to disseminate and use them, please contact the lecturer.
	Contact list
	Keynote
	Prof. Jochen Köhler
	Download Jochen Köhler's course material
	Design and assessment criteria for safety and cost efficiency
	Background document for further reading and reflection
	🖾 jochen.kohler@ntnu.no
	Monitoring and auscultation

Context and Information

Calibration - best practice and challenge

- About the course
- Lecturer
- Getting started with Python
- · Alternatively you can access the exercise without any configuration or installation by following this link:

Course Material

- Lecture Slides
- Lecture Notes
- Iupyter Notebook

Keynote lecture

Abstact

A rational basis for the specification of reliability requirements for design and assessment of structures is introduced and discussed in this lecture. It is thereby focused on the challenges related to the practical application of reliability requirements and aspects of standardization.

- Keynote Slides
- Background document for further reading and reflection

This project is maintained by inchenkohler

Course material

View the Project on GitHub

Table of contents

1. Motivation for Calibration

- 2. Reliability based design
- 3. Design Value Format
- 4. Generalising α
- 5. Reality check extended examples
- 6. Alternative approach to calibration

• Sustainable development of the build environment requires optimal balance between **safety** and **resource efficiency**.

- Sustainable development of the build environment requires optimal balance between **safety** and **resource efficiency**.
- For **structural** design this balance can be identified using a **high** level design strategy e.g. risk informed decision making.

- Sustainable development of the build environment requires optimal balance between **safety** and **resource efficiency**.
- For **structural** design this balance can be identified using a **high** level design strategy e.g. risk informed decision making.
- Daily life practical decisions require a simple and easy to use **low** level design strategy e.g. partial factor design.

Levels of Structural Engineering Decision Making

	Commonly applied when:	Objective:
Risk-informed decision making: - decisions are taken with due consideration of the decision makers preferences.	Exceptional design situations in regard to uncertainties and consequences.	Maximize the expected utility of the decision maker.
Reliability-based design and assessment: - estimation of the probability of adverse events.	Unusual design situations in regard to uncertainties.	Satisfy reliability requirements.
Semi-probabilistic: - safety format prescribing design criteria in terms of the design equations and the analysis procedures to be used.	Usual design situations in regard to consequences and uncertainties. Default method of most design codes.	Satisfy deterministic design criteria.

Questions?

Reliability based design

In the Eurocodes *appropriate* level of reliability is dependent on:

In the Eurocodes *appropriate* level of reliability is dependent on:

- the possible cause and /or **mode** of attaining a limit state;
- the possible **consequences** of failure in terms of risk to life, injury, potential economical losses;
- public **aversion** to failure;

In the Eurocodes *appropriate* level of reliability is dependent on:

- the possible cause and /or **mode** of attaining a limit state;
- the possible **consequences** of failure in terms of risk to life, injury, potential economical losses;
- public **aversion** to failure;
- the **expense** and procedures necessary to **reduce** the risk of failure.

Reliability Class	Minimum values for β						
	1 year reference period	50 years reference period					
RC3	5,2	4,3					
RC2	4,7	3,8					
RC1	4,2	3,3					

Figure 1: Reliability requirements as stated in EN 1990:2002

Reliability based design - a simple example

	μ	V
Capacity C [kN/mm ²]	1	0.10
Load S [kN]	1	0.34

C,S Normal distributed.

Reliability based design - a simple example

	μ	V
Capacity C [kN/mm ²]	1	0.10
Load S [kN]	1	0.34

C,S Normal distributed.

• A design can be identified that **corresponds** to a specified reliability requirement.

- A design can be identified that **corresponds** to a specified reliability requirement.
- The most simple form of reliability problem was considered here, but in practice it is often much **more complex**.

- A design can be identified that **corresponds** to a specified reliability requirement.
- The most simple form of reliability problem was considered here, but in practice it is often much **more complex**.
- The achieved reliability is **conditional on utilised knowledge** the reliability based design solution is also conditional on knowledge!

- A design can be identified that **corresponds** to a specified reliability requirement.
- The most simple form of reliability problem was considered here, but in practice it is often much **more complex**.
- The achieved reliability is **conditional on utilised knowledge** the reliability based design solution is also conditional on knowledge!
- Reliability is always dependent on specified reference time.

Questions?

Design Value Format

Based on the simple reliability problem:

$$\beta = \frac{\mu_{\rm R} - \mu_{\rm S}}{\sqrt{\sigma_{\rm R}^2 + \sigma_{\rm S}^2}} \qquad (2$$

And

$$\beta \stackrel{!}{=} \beta_{req}$$

Design values and characteristic values

The **design value** of a basic variable Y is defined as the multiplication or division of a corresponding **partial safety factor** γ_Y and the characteristic value y_k :

$$\frac{r_k}{\gamma_R} = r_d \ge e_d = \gamma_E e_k \tag{2}$$

Design values and characteristic values

The **design value** of a basic variable Y is defined as the multiplication or division of a corresponding **partial safety factor** γ_Y and the characteristic value y_k :

$$\frac{r_k}{\gamma_R} = r_d \ge e_d = \gamma_E e_k \tag{2}$$

A characteristic value y_k is taken as a specified p- fractile value from the statistical distribution $F_Y(y)$ that is chosen to represent the basic variable, as:

$$y_k = F_Y^{-1}(p)$$
 (3)

Design values and characteristic values

The **design value** of a basic variable Y is defined as the multiplication or division of a corresponding **partial safety factor** γ_Y and the characteristic value y_k :

$$\frac{r_k}{\gamma_R} = r_d \ge e_d = \gamma_E e_k \tag{2}$$

A characteristic value y_k is taken as a specified p- fractile value from the statistical distribution $F_Y(y)$ that is chosen to represent the basic variable, as:

$$y_k = F_Y^{-1}(p)$$
 (3)

Note: Typical values for *p* are:

- resistance related variables: p = 0.05;
- permanent actions: p = 0.5;
- time-variable actions (yearly reference period): p = 0.98.

Design value format - a simple example

	μ	V
Capacity C [kN/mm ²]	1	0.10
Load S [kN]	1	0.34

C,S Normal distributed.

Design value format - generalisation to other distributions

Normal:

$$y_{d} = \mu_{Y} (1 + \alpha_{Y}\beta_{t}V_{Y})$$

$$y_{k} = \mu_{Y} (1 + \Phi^{-1}(p)V_{Y})$$
Log-Normal:

$$y_{d} = \mu_{Y} \exp\left(-\frac{1}{2}\ln(1 + V_{Y}^{2}) + \alpha_{Y}\beta_{t}\sqrt{\ln(1 + V_{Y}^{2})}\right)$$

$$y_{k} = \mu_{Y} \exp\left(-\frac{1}{2}\ln(1 + V_{Y}^{2}) + \Phi^{-1}(p)\sqrt{\ln(1 + V_{Y}^{2})}\right)$$
Gumbel:

$$y_{d} = \mu_{Y} \left(1 - V_{Y}\frac{\sqrt{6}}{\pi}(0.5772 + \ln(-\ln(\Phi(\alpha_{Y}\beta_{t}))))\right)$$

$$y_{k} = \mu_{Y} \left(1 - V_{Y}\frac{\sqrt{6}}{\pi}(0.5772 + \ln(-\ln(p)))\right)$$

• A **one to one correspondence** between the reliability based design can be established,

- A **one to one correspondence** between the reliability based design can be established,
- ... but only for **specific design cases**.

- A **one to one correspondence** between the reliability based design can be established,
- ... but only for **specific design cases**.
- \cdot The α values are case specific and their determination may be cumbersome.

- A **one to one correspondence** between the reliability based design can be established,
- ... but only for **specific design cases**.
- The α values are case specific and their determination may be cumbersome.
- Both, α and the extreme value distribution representing the variable load have to relate to the same **time reference period** than the reliability target.

Questions?

Generalising α

• For ease of practical application, it would be good to prescribe a set of generalised α values.

- For ease of practical application, it would be good to prescribe a set of generalised α values.
- The set of generalised α values shall lead to safe design solutions for most of the cases.

- For ease of practical application, it would be good to prescribe a set of generalised α values.
- The set of generalised α values shall lead to safe design solutions for most of the cases.
- Alternative representation of the reliability problem for an informed choice.

Hashofer-Lind representation of reliability problem

Hashofer-Lind representation of reliability problem

Hashofer-Lind representation of reliability problem

C,S Normal distributed.

Generalisation

The following Eurocode standardized values can be used for a **50 years reference period**:

- If Y represents a strength related variable: $\alpha_{\rm Y} = -0.8$
- If Y represents a load related variable: $\alpha_{\rm Y} = 0.7$
- If Y is dominating the reliability problem: $\alpha_{\rm Y} = (-)1$
- If Y represents a secondary strength or load related variable: $\alpha_Y = -0.8 \cdot 0.4$ or $\alpha_Y = 0.7 \cdot 0.4$ correspondingly.

Reality check - extended examples

Initial Example continued

C, a

 $\downarrow S$

•	Example 1		Example 2		Example 3a			Example 3b				
	Distr.	μ	V	Distr.	μ	V	Distr.	μ	V	Distr.	μ	V
Capacity C [kN/mm ²]	Normal	1	0.1	Normal	1	0.2	LogN	1	0.1	LogN	1	0.2
Load S [kN]	Normal	1	0.335	Normal	1	0.335	Gumbel	1	0.335	Gumbel	1	0.335

Initial Example continued

C, a

 $\downarrow S$

•	Example 1			Example 2			Example 3a			Example 3b		
	Distr.	μ	V	Distr.	μ	V	Distr.	μ	V	Distr.	μ	V
Capacity C [kN/mm ²]	Normal	1	0.1	Normal	1	0.2	LogN	1	0.1	LogN	1	0.2
Load S [kN]	Normal	1	0.335	Normal	1	0.335	Gumbel	1	0.335	Gumbel	1	0.335

	Example 1	Example 2	Example 3a	Example 3b
Section [mm ²]	2.62	5.03	3.56	4.21
α_R	0.615	0.949	0.298	0.516
ας	0.788	0.316	0.955	0.856

	Example 1	Example 2	Example 3a	Example 3b			
Simplified Assumptions	$\alpha_R^* = -0.8; \ \alpha_S^* = 0.7; \ \beta_{req} = 3.8$						
Cross section [<i>mm</i> ²]	2.717	4.824	3.113	4.21			
Real α_R	-0.630	-0.945	-0.291	-0.516			
Real $\alpha_{\rm S}$	0.777	0.328	0.957	0.853			
Real β	3.98	3.74	3.41	3.80			

Ext. Example - Application of the generalized α - values

25

A simple calibration case study

$$H(R, G, Q, X_Q) = zR_i - (1 - a)G - aX_QQ \quad \text{with}$$

$$z = \gamma_{R_i} \frac{(1 - a) \cdot \gamma_G \cdot g_k + a \cdot \gamma_Q \cdot q_k^*}{r_{k,i}}$$
(4)

A simple calibration case study

$$H(R, G, Q, X_Q) = zR_i - (1 - a)G - aX_QQ \quad \text{with}$$
$$z = \gamma_{R_i} \frac{(1 - a) \cdot \gamma_G \cdot g_k + a \cdot \gamma_Q \cdot q_k^*}{r_{k,i}}$$

	Dist.	μ	V	р
Material 1	LN	1	0.1	0.05
Permanent	N	1	0.1	0.5
Variable (50a-max)	G	1	0.15	(see below)
Model Uncertainty	LN	1	0.3	

 $Q^* = X_Q Q_{1a}$ and q_k^* such that $F_{Q^*}(q_k^*) = 0.98$

(4)

A simple calibration case study - real alpha values

A simple calibration case study - generalized alpha values

A simple calibration case study - generalized alpha values applied on material

29

• The application of Eurocode generalised α -values leads to sufficiently safe design solutions for a range of design cases.

- The application of Eurocode generalised α -values leads to sufficiently safe design solutions for a range of design cases.
- Applying the Eurocode generalised α -values to a realistic range of design cases results in a **large variability of achieved reliability**, design solutions are either:

- The application of Eurocode generalised α -values leads to sufficiently safe design solutions for a range of design cases.
- Applying the Eurocode generalised α -values to a realistic range of design cases results in a **large variability of achieved reliability**, design solutions are either:
 - unsafe, i.e. achieved reliability is below the reliability requirement,

- The application of Eurocode generalised α -values leads to sufficiently safe design solutions for a range of design cases.
- Applying the Eurocode generalised α -values to a realistic range of design cases results in a **large variability of achieved reliability**, design solutions are either:
 - unsafe, i.e. achieved reliability is below the reliability requirement,
 - safe by large margin, that corresponds to **unnecessary use of material**.

- The application of Eurocode generalised α -values leads to sufficiently safe design solutions for a range of design cases.
- Applying the Eurocode generalised α -values to a realistic range of design cases results in a large variability of achieved reliability, design solutions are either:
 - unsafe, i.e. achieved reliability is below the reliability requirement,
 - safe by large margin, that corresponds to unnecessary use of material.
- Especially the application of the generalised α -value on single variables in isolation is not effective and, as demonstrated in this note, the obtained safety levels are partly not acceptable.

- The application of Eurocode generalised α -values leads to sufficiently safe design solutions for a range of design cases.
- Applying the Eurocode generalised α -values to a realistic range of design cases results in a **large variability of achieved reliability**, design solutions are either:
 - unsafe, i.e. achieved reliability is below the reliability requirement,
 - safe by large margin, that corresponds to unnecessary use of material.
- Especially the application of the generalised α -value on single variables in isolation is not effective and, as demonstrated in this note, the obtained safety levels are partly not acceptable.
- It is recommended to reconsider the recommendation of the design value approach with its generalised α -values in the revision of the Eurocodes.

Questions?

Alternative approach to calibration

• Partial factors to be applied for a domain of design situations.

- Partial factors to be applied for a domain of design situations.
- We search for the *best compromise*.

$$\min_{\gamma_R^*, \gamma_G^*, \gamma_Q^*} \left\{ \sum_{i=1}^n \left(\beta_t - \beta_i (\gamma_R, \gamma_G, \gamma_Q, \mathcal{D}_i) \right)^2 \right\}$$
(5)

Calibration as an optimisation problem

- Partial factors to be applied for a domain of design situations.
- We search for the *best compromise*.
- The best compromise to be identified by simple least square difference to the target, as

$$\min_{\gamma_R^*, \gamma_G^*, \gamma_Q^*} \left\{ \sum_{i=1}^n \left(\beta_t - \beta_i (\gamma_R, \gamma_G, \gamma_Q, \mathcal{D}_i) \right)^2 \right\}$$
(5)

Questions?