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Synopsis:
These are the Notes that accompany the lecture given at the 2nd INFRASTAR training school, 28.10.2020,
online.
Structural design standards are used for the daily design of structures. They comprise of simple rules
that represent the current best practice and are generally applied to regular structures. Structural design
standards do not account for risk, reliability and uncertainty in an explicit manner. However, the safety
concept that is implemented is taking reference to uncertainty and reliability implicitly in terms of partial
safety factors and characteristic values.
In this lecture, it is demonstrated that structural design standards correspond to the societal preference for
safety and cost effectiveness. A direct correspondence between reliability and the choice of partial safety
factors is developed for particular cases. However, it is also shown that the set up of structural design
codes is merely a problem of proper generalisation and simplification.
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Lecture on Code Calibration

1. Concepts

1.1. Levels of design

The design of a structure is in principle a decision problem with the objective to identify a
structural design with a performance that maximizes the expected utility (or equivalently min-
imizes the expected cost) for the corresponding decision maker Rackwitz (2000). A common
attribute of these decisions is that they have to be performed subject to uncertainties. In general,
different levels of detail for the assessment of the structural performance are distinguished (ISO
2015); risk informed decision making, reliability based design, and semi-probabilistic design
(see overview in Figure 1).

Semi-probabilistic approach:
- safety format prescribing the design

equations and the analysis procedures

to be used.

Reliability-based design and 

assessment:
- reliability requirement to fulfil.

Risk-informed decision making:
- decisions are taken with due consideration

of the total risks (e.g. loss of lives, injuries, 

environmental and monetary losses.

Usual design situations in regard to 

consequences and uncertainties.

Default method of most design codes.

Commonly applied when:

Unusual design situations 

in regard to uncertainties.

Code Calibration.

Exceptional design situations 

in regard to uncertainties and

consequences.

Derivation of reliability requirements.

Figure 1: Different levels of detail for the assessment of the structural performance as arranged
in ISO (2015)

The three different approaches are often associated to numbered levels: The semi-probabilistic
approach corresponds to Level 1, the reliability based approach to Level 2 or 3 (dependent on
the level of detail in uncertainty representation), and the risk informed approach corresponds to
Level 4. The approaches on the different levels closely correspond to each other. The ability to
account for the particular conditions of specific design situations and therefore identify a more
optimal design solution is also increasing with increasing level. That is the reason why higher
level approaches should be used to verify or calibrate lower level approaches. However, the
complexity and difficulty is increasing with increasing level and from a regulative perspective,
i.e. where a unified set of rules and assumptions for broad application shall be standardized, low
level approaches are advantageous since their inherent low level of detail goes along with the
allowance for broad generalization.
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1.2. Risk informed decision making

Risk informed decision making allows for the highest level of detail and follows broadly
the scheme of Bayesian Decision Analysis JCSS (2008). In the structural engineering context,
decision alternatives may include structural measures, i.e. the dimension of cross sections, the
choice of material grades, the design of a superstructure, repair and strengthening etc., and non-
structural measures as e.g. the implementation of quality control and checking, inspection or the
installation of structural health monitoring. Simplification or enhancement in the representation
of the decision problem by models could also considered as a non-structural measure. It is
assumed that executive decision making is not mechanically following the results of the formal
decision analysis but that the well documented assessment informs the decision maker, such that
he or she is able to identify his or her final decision.

Risk informed decision making is very flexible and can be applied for systems of different
scale in space and time. Depending on the definition of the system boundaries, structural per-
formance attributes as e.g. sustainability, resilience, robustness and reliability can be addressed
within an analysis (Faber et al. 2018). The risk informed decision framework can also be applied
for the calibration of lower level decision making methods.

Guidance and standardisation for risk based decision making can be found in ISO (2015).
However, the flexibility and generality of the method requires a large amount of expertise and
experience from the person or group of persons elaborating on a risk based decision analysis.

1.3. Reliability based design

In reliability based design, the design decision is chosen such that it complies to a prede-
fined reliability requirement. The reliability requirement is defined based on past experience,
i.e. specified as the inherent reliability of traditionally accepted design solutions (Baravalle et
al. 2017), or it is based on formal calibration using risk informed methods. Following the latter,
it may be differentiated between different types of decisions on structures in regard to conse-
quences and the relative cost of implementing the decision as discussed in the keynote lecture
from yesterday. In reliability based design, it is possible to assess the effect of a decision on
the structural performance on a component level, i.e. only one possible failure mode is con-
sidered, or on a system level, i.e. the interaction of different failure modes in a structure are
considered. However, as consequences are not represented explicitly in a reliability analysis,
subordinate structural performance attributes as robustness, sustainability and resilience can not
be considered explicitly by reliability based design.

Reliability based design is addressed in the international standard ISO (2015), more detailed
guidance on structural reliability methods and uncertainty representation in regard to models,
structural resistance and structural demands is found in the Probabilistic Model Code of the Joint
Committee on Structural Safety, (JCSS 2001).

1.4. Semi-probabilistic design

The semi-probabilistic approach corresponds to the lowest level of detail. Here, a design
decision is chosen such that it complies with the criterion that a design value of a resistance is
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larger than a design value of a corresponding load effect. Design values for the load bearing
capacity rd are chosen to have a sufficiently low non-exceedance probability and design values
for loads ed are chosen to have a sufficiently low exceedance probability such that the design
criterion in the limit (rd = ed) corresponds to the required level of reliability.

In the so-called load and resistance factor design (LRFD) format (Ravindra et al. 1978) design
values are estimated based on characteristic values and partial safety factors γ as e.g. rd = rk/γM
for resistance variables and ed = γE · ek for the effects of applied loads. Both, the definition
of the characteristic value and the choice of partial safety factor, is made in order to meet the
reliability requirements. However, the correspondence to reliability requirements is generally
made for domains of structures for that generalised assumptions in regard to consequences and
uncertainties are made. With semi-probabilistic design, structural performance on a compo-
nent/failure mode level can be assessed. The explicit consideration of the interaction of failure
modes in a structure, i.e. system effects, is not accommodated.

The principles of semi-probabilistic design are outlined in ISO (2015). It is the method of
choice for most structural design decision problems and executive guidance and standardisation
is found in several national and international design standards as, e.g. the Eurocodes (CEN
2002).

1.5. Relevance and correspondence

The different levels of engineering decision making are all relevant and support the super-
ordinate objective of the safe and optimal development and maintenance of structures in the build
environment. And the approaches on the different levels closely correspond to each other. The
ability to account for the particular conditions of specific design situations and therefore iden-
tify a more optimal design solution is increasing with increasing level. That is the reason why
higher level approaches are used to verify or calibrate lower level approaches. However, the com-
plexity and difficulty is increasing with increasing level and from a regulative perspective, i.e.
where a unified set of rules and assumptions for broad application shall be standardised, semi-
probabilistic approaches are advantageous since their inherent low level of detail goes along with
the allowance for broad generalisation. The design, calibration and layout of simplified decision
making approaches, has to be based, directly or indirectly, on risk informed decision making,
as this is the only level of detail that allows for the explicit consideration of the superordinate
objectives in engineering decision making.

2. EUROCODE semi-probabilistic design

2.1. General framework and design values

In the Eurocodes a semi-probabilistic design method is introduced through partial factor de-
sign that is generally applied as default design method for common design situations. The partial
factor design format is formulated such that it facilitates the identification of acceptable and fea-
sible design solutions concerning new structures. The partial factor design format comprises:

• consequence class categorization (see EN1990 Annex B);

Page 3



Section: EUROCODE semi-probabilistic design INFRASTAR Training School

• design situations (see EN1990 and EN1991-EN1999);

• design equations (see EN1990 and EN1991-EN1999);

• design values (as determined according EN1990, section 6).

Design equations can in general be formulated for failure modes involving in principle both
failure of individual cross sections of the structures, as well as for failure modes involving the
failures of several cross sections of the structures. The principle form of the design equation is
given as (compare EN1990, equation 6.1):

rd − ed ≥ 0 (1)

where the design values for the load bearing capacity rd and the action effect ed are obtained
from:

rd = rd (xd; ad;θd) (2)

ed = ed (fd; ad;θd) (3)

where:

xd is a vector of design values of material properties;

fd is a vector of design values of actions;

ad is a vector of design values of geometrical properties;

θd is a vector of design values of model uncertainties.

2.2. Partial factors

The design value of a basic variable Y is defined as the multiplication or division of a cor-
responding partial safety factor γY and the characteristic value yk. Accordingly, Eq. (1) can be
rewritten in an extended form as:

rk
γR

= rd ≥ ed = γEek (4)

A characteristic value yk is taken as a specified p− fractile value from the statistical distri-
bution FY (y) that is chosen to represent the basic variable, as:

yk = F−1
Y (p) (5)

where FY (y) is the cumulative probability distribution function of the basic variable.
Note: Typical values for p are:

• resistance related variables: p = 0.05;

• permanent actions: p = 0.5;

• time-variable actions (yearly reference period): p = 0.98.
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The partial safety factors for the various actions and materials characteristics entering the
design equations are determined such as to account for the uncertainties associated with the loads
and resistances which are of relevance for the given design situation in such a way that design
solutions that fulfill the inequality in Eq. (4) are consistent with the reliability requirements of
the Eurocodes.

2.3. Reliability requirements in the Eurocodes

A basic requirement stated in the Eurocode is that structures shall sustain its anticipated
loads with appropriate level of reliability and in an economical way, see section 2.1(1) of EN
1990:2002. The term “appropriate level of reliability” is specified further in 2.2(3) where its
choice is related to relevant factors, including:

(a) the possible cause and /or mode of attaining a limit state;

(b) the possible consequences of failure in terms of risk to life, injury, potential economical
losses;

(c) public aversion to failure;

(d) the expense and procedures necessary to reduce the risk of failure.

A formal differentiation according to (a), (c) and (d) is not further considered in the present
version of the Eurocode. According to (b), structures and components are classified, e.g., regard-
ing the consequence of failure, whereas the reliability levels might be given either for classified
structures as a whole or for classified components (see 2.2(4) of EN 1990:2002).

In EN 1990:2002, Annex B3.1, a classification of buildings and structures in terms of con-
sequences is defined (3 classes). It is mentioned that importance of a failure mode for the con-
sequences should be considered (see B3.1(2,3) of EN 1990:2002). This might lead to different
classification of different failure modes in one structure. In EN 1990:2002, B3.2 minimum reli-
ability levels for 3 consequence classes are recommended.

Figure 2: Reliability requirements as stated in the EUROCODES.

Page 5



Section: EUROCODE semi-probabilistic design INFRASTAR Training School

2.4. Direct correspondence between reliability and design values - the design
value approach

For specific cases, a direct correspondence between the design value and the reliability re-
quirements can be established by the so called design value method. In order to demonstrate
this, the simple reliability problem is revisited, where one normal distributed resistance variable
R is compared with a normal distributed load variable S by a safety margin M that is defined
correspondingly as normal distributed (for independent R and S), i.e. M = R − S. Failure is
then defined as M = R− S < 0 and the failure probability as

pF = Pr (M = R− S < 0) = Φ

(
0− µM
σM

)
= Φ

(
−µR + µS√
σ2
R + σ2

S

)
= Φ (−β)

(6)

Thus, for this simple case, the reliability index β is defined as

β =
µR − µS√
σ2
R + σ2

S

(7)

In structural design e.g. according to the Eurocodes, the reliability requirement is given as a
design requirement βreq. Therefore, it is useful to reformulate the above expression, i.e. to
facilitate the identification of a combination of R and S that comply with, say, βreq = 3.8 such
that β ≥ βreq. The distance between the mean values that is in compliance with the required
reliability is determined as µR−µS ≥ βreqσM , whereas σM can be splitted into the contributions
from R and S as

µR − µS ≥ βreq
σR√
σ2
R + σ2

S

σR + βreq
σS√

σ2
R + σ2

S

σS

Introducing the weighting factors αR and αS as

αR =
σR√
σ2
R + σ2

S

αS =
σS√

σ2
R + σ2

S

(8)

and separating the resistance from the load side, the following expression is obtained:

µR − αRβreqσR ≥ µS + αSβreqσS

µR (1− αRβreqVR) ≥ µS (1 + αSβreqVS)

rd ≥ sd

(9)

with the coefficients of variation VR and VS and so-called design values rd and sd.

Note: Equation (9) looks very convenient for structural design as it suggests the separation
of load and resistance variables. But this is not really the case as the weighting factors αR and
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αS contain the standard deviations of both variables. The implications of this are demonstrated
by the following example.

Example 1. Consider the simple example, where a tension rod with material capacity C is ex-
posed to a load S. Both variables are considered as independent and normal distributed with
parameters given in Table 1. The cross section area a that complies with the reliability require-
ment βreq = 3.8 is to be specified by the application of Eq. (9).

Table 1: Mean value µ and coefficient of variation V of the capacity C and the load S.

µ V
Capacity C [kN/mm2] 1 0.10
Load S [kN ] 1 0.34

The required design value rd for the resistanceR = a ·C can be expressed based on Equation
(9):

rd = a · µC (1− αRβreqVC) ≥ µS (1 + αSβreqVS) = sd

a · µC

(
1− aσC√

a2σ2
C + σ2

S

βreqVC

)
≥ µS

(
1 +

σS√
a2σ2

C + σ2
S

βreqVS

)

, i.e. the cross section area a is chosen such that the equation above is fulfilled.
Unfortunately, the identification of a is not as straight forward as it looks, since both, αR

and αS are dependent on a. However, a solution can be found with a = 2.615 mm2, which
corresponds to rd = sd = 2 kN and αR = 0.6153 and αS = 0.7882.

Obviously, the same result is obtained based on Equation (7), i.e. without the splitting into
design values.

a such that βreq = 3.8 ≤ β =
a · µC − µS√
a2σ2

C + σ2
S

4

From the example it becomes obvious that the computation of the design value of the re-
sistance, rd, requires the evaluation of αR and this in turn requires the full evaluation of the
reliability problem. In order to circumvent this problem the EUROCODES introduce so-called
standardized α values. In order to develop the background for the choice of these standardized α
values it is useful to represent the considered simple reliability problem as it was first introduced
by Hasshofer and Lind in 1974.

2.4.1. Alternative representation of the simple reliability problem

Hasofer et al. 1974 suggested an alternative representation of the reliability problem and a gener-
alised definition of the reliability index that is also applicable to non-linear reliability problems
with non-normal random variables. Applied to the simple reliability problem from above, i.e.
one normal distributed resistance variableR is compared with a normal distributed load variable
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S, a so-called limit state function is introduced, as

g(r, s) = r − s = 0 (10)

The limit state function can be illustrated together with the joint probability density function of
R and S, fR,S(r, s), compare Figure 3, where it can be seen that the limit state is dividing the
possible domain of r and s into a failure domain, g(r, s) ≤ 0 and a safe domain, g(r, s) > 0. The
probability of failure can be computed by integrating the joint probability distribution function
over the failure domain, i.e.

pF =

∫
g(r,s)≤0

fR,S(r, s)dr ds (11)

By transforming the normal distributed random variables, R and S into standard normal vari-
ables UR = (R − µR)/σR and US = (S − µS)/σS , the limit state function can be written as a
function of uR and uS , as

g(uR, uS) = (uRσR + µR)− (uSσS + µS) = 0 (12)

Figure 3: Left: The simple reliability problem with the resistance r and the load s. The topology
of the joint probability density is indicated by the ellipses, the failure domain is below the limit
state g(r, s) = 0, the safe domain is above.
Right: The same problem represented in the standard normal space and with the variables uR
and uS . fUR,US

(uR, uS) = φ(u) is the standard normal density.

Introducing the unit vector α, with the cosine of direction αR and αS , we find the reliability
index β geometrically (compare Figure 3) as the shortest (orthogonal) distance between the limit
state and the origin:

g(uR, uS) = β − αR · uR − αS · uS = 0

g(u) = β −αTu = 0
(13)

For the simple reliability problem the α-values and β are identical to Equation (7) and (8),
the different geometrical interpretation, however, is much more general, that is
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• The design point u∗ = αβ is the point on the limit state function g(u) = 0 that is closest
to the origin.

• α is the normal vector on the limit state in the design point.

• β is the distance between the origin and the design point.

• In correspondence to Equation (7) rd = αRβσR + µR and sd = αSβσS + µS are defining
the coordinates of the design point and are referred to as the design values of the resistance
and the load.

Example 2. The alternative representation is applied to the example above and obviously, similar
results are obtained. The corresponding graphical representation can be inspected in Figure 4.

Figure 4: Illustration of Example 1 in the standard normal space.

4

2.5. Derivation of generalized α-values

In the following, the derivation of a set of generalised α-values that provide sufficiently accu-
rate estimations of the design point for a relevant range of design situations is explored. Similar
considerations have been done by König et al. 1981 and their results have been adapted in the
current version of EN1990.
The idea is as follows: α is a unit vector of length 1. If a set of generalised α-values is se-
lected such that the corresponding vector sum is larger than 1, these generalised α-values could
be applied to a range of cases and still lead to design solutions that comply with the required
reliability. The idea is illustrated in Figure 5.

Accordingly and for linear limit state functions and normal distributed variables R and S,
the range of cases for which the generalised α-values, if applied in combination both on the load
and on the resistance side, result in design solutions that comply with the reliability requirement
can be represented by the angle δ as

cos δ =
β

β∗
=

1√
α∗2R + α∗2S

(14)
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Figure 5: Illustration of the effect of the application of generalised α-values, α∗R and α∗S creating
a range of design cases (indicated in green) for which compliance with the safety requirement
can be achieved.

2.6. The generalised α-values in the Eurocodes

In the Eurocodes (prEN 1990:E2020 and EN1990:2002) the generalised α-values for the
dominant resistance and load variable are

α∗R,EC = −0.8

α∗S,EC = 0.7
(15)

With βreq = 3.8 and following up the illustration in Figure 5, this corresponds to β∗ = 4.04 and
δ = 19.8◦. When Equation (9) is applied for evaluating the design values rd and sd the design
solutions identified based on the criterion rd = sd have a reliability index larger than 3.8 for
normal distributed variables and real α-values in the range of αR > −0.956 and αS < 0.9.

2.6.1. Generalisation of the Design Value Approach to other than Normal distributions

With proper transformation, the variables design value can be approximated.
Accordingly, the design value is defined as

yd = F−1
Y (Φ(αY βt))) (16)

where yd is the design value of a variable Y , FY is its cumulative distribution function, αY
(with |αY |≤ 1 ) is a sensitivity factor indicating the importance of Y in the reliability estimation,
and βt is the target value for the reliability index specifying the reliability requirement.

Design value yd and characteristic value yk for some common distributions are determined
according:
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Normal: yd = µY (1 + αY βtVY )

yk = µY (1 + Φ−1(p)VY )

Log-Normal: yd = µY exp

(
−

1

2
ln (1 + V 2

Y ) + αY βt
√

ln (1 + V 2
Y )

)

yk = µY exp

(
−

1

2
ln (1 + V 2

Y ) + Φ−1(p)
√

ln (1 + V 2
Y )

)

Gumbel: yd = µY

(
1− VY

√
6

π
(0.5772 + ln (− ln (Φ(αY βt))))

)

yk = µY

(
1− VY

√
6

π
(0.5772 + ln (− ln (p)))

)

The FORM sensitivity factors αY are resulting from the reliability analysis of the the design
situation at hand. If no reliability analysis is performed, the following Eurocode standardized
values can be used for a 50 years reference period:

• If Y represents a strength related variable: αY = −0.8

• If Y represents a load related variable: αY = 0.7

• If Y is dominating the reliability problem: αY = (−)1

• If Y represents a secondary strength or load related variable: αY = −0.8 · 0.4 or αY =

0.7 · 0.4 correspondingly.

Self-weight is usually represented by a Normal distribution; Resistance variables are often
represented by a Log-Normal distribution; the extreme values per reference period of time-
variable actions are represented by the Gumbel distribution.

3. Application examples

E-1.1. Code calibration

NOTE: A similar example is discussed alongside a Jupyter Notebook during the lecture. Note
that the input variables are not entirely identical (and therefore neither the results).

Geometry

The simply supported beam in Figure 6 is to be designed with a given target reliability. The basic
random variables that represent the situation are given in Table 3. The resulting beam span and
cross-section modulus are dependent on the design philosophy that is followed. The following
formats are to be considered: reliability based design, load and resistance factor design and
global partial safety factor.

The limit state function for bending moment at mid-span is:

g(fm, g, q) = W · fm − g
l2

8
− q l

4
≤ 0 (17)
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Table 3: Basic random variables ( ∗ ≡ yearly maxima).

G Q∗ Fm
Distribution Normal Normal Normal
Mean (µX) 2 N/mm 10000 N 200 MPa
Standard dev. (σX) 0.30 N/mm 4000 N 20 MPa
Coeff. of var. (COVX) 15% 40% 10%
Characteristic fractile (kX) 0.50 0.95 0.05

Figure 6: Beam geometry and loads.

The corresponding reliability index is:

β =
WµFm − µG

l2

8
− µQ

l

4√
(WσFm)2 +

(
σG
l2

8

)2

+

(
σQ

l

4

)2
(18)

E-1.2. Reliability based design

The beam cross-section W can be chosen such that the reliability index of the beam corre-
sponds to the target reliability, i.e. β = βt. This corresponds to the so-called reliability based
design. E.g. for l = 6 m, the section plastic modulus giving β = βt is found to beW = 3.01·105.
The cross-section plastic modulus is plotted against the beam length in Figure 7.

E-1.2.1. Load and resistance factor design format

Although modern structural design codes (like Eurocodes) allow reliability based design, they
propose simpler design procedures in the semi-probabilistic design format, where design equa-
tions are written in the load and resistance factor design format (LRFD). This format is re-
ferred to as semi-probabilistic, since random variables (represented by distribution functions)
are reduced to design values, which are obtained from characteristic values as rd = rk/γR (for
resistance) and sd = sk/γS (for actions). The format is simpler, since the designer can check the
design just by comparing design values, without the necessity of using reliability analyses.
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Figure 7: Reliability based design for different beam lengths for β = βt = 4.2.

The design equation of the beam above is:

W · fm,d − gd
l2

8
− qd

l

4
≤ 0 (19)

where:

• fm,d =
fm,k
γR

; gd = gkγG and qd = qkγQ are the design values;

• fm,k = F−1
Fm

(kFm); gk = F−1
G (kG) and qk = F−1

Q (kQ) are the characteristic values
corresponding to the characteristic fractiles kFm , kG and kQ, which are defined arbitrarily
and

• γG; γR and γQ are the partial safety factors (p.s.f.).

The minimum cross-section plastic modulus satisfying Eq. (19) is:

Wmin =
gKγG

l2

8
+ qKγQ

l

4
fm,k
γR

(20)

3.0.1. Calibration of partial safety factors for a given span

The p.s.f. need to be calibrated so that the design given in Eq. (20) fulfills a target safety. This
corresponds to answer the question which values of the p.s.f. in Eq. (20) provides a design (i.e.
W ) associated with the level of risk β = βt?

The limit state function in Eq. (17) is rewritten with W = Wmin:

g(fm, g, q) =
gKγG

l2

8
+ qKγQ

l

4
fm,k
γR

fm − g
l2

8
− q l

4
≤ 0 (21)
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Consequently Eq. (18) becomes:

β =

gKγG
l2

8
+ qKγQ

l

4
fm,k
γR

µFm − µG
l2

8
− µQ

l

4√√√√√√√

gKγG

l2

8
+ qKγQ

l

4
fm,k
γR

σFm


2

+

(
σG
l2

8

)2

+

(
σQ

l

4

)2

(22)

where it is clear that the reliability of the design depends on the partial safety factors, i.e.
β = β(γR, γG, γQ).

The calibrate partial safety factors (γ∗R, γ
∗
G, γ

∗
Q) are found by setting β(γ∗R, γ

∗
G, γ

∗
Q) ≡ βt.

Note that there are infinite sets of (γ∗R, γ
∗
G, γ

∗
Q) which satisfy the equality. By fixing one p.s.f.

(e.g. γ∗R = 1.05) a unique set is obtained.
By way of example, setting l = 6 m, the calibrated partial safety factors result in (γ∗R =

1.05, γ∗G = 1.344, γ∗Q = 1.437), yielding W = 300610 mm3. Numerical minimization in
Matlab© has been used.

Design value method - FORM sensitivity factors method

An alternative method for p.s.f. calibration makes use of the FORM sensitivity factors, which
are:

αFm =
−WσFm

k
; αG =

(
σG
l2

8

)
k

; αQ =

(
σQ

l

4

)
k

(23)

with:

k =

√
(WσFm)2 +

(
σG
l2

8

)2

+

(
σQ

l

4

)2

(24)

Introducing W = 3.01 · 105 mm3 that was found for l = 6 m, the sensitivity factors are
(αFm = −0.699, αQ = 0.698, αG = 0.157). The corresponding partial safety factors are:

γ∗R =
fm,k
fm,d

=
1 + Φ−1(kFm) · COVFm

1 + αFmβtCOVFm

= 1.18

γ∗Q =
qd
qk

=
1 + αQβt · COVQ

1 + Φ−1(kQ)COVQ
= 1.31

γ∗G =
gd
gk

=
1 + αGβt · COVG

1 + Φ−1(kG)COVG
= 1.10

(25)

It is highlighted that the two sets of optimized p.s.f. (γ∗R = 1.05, γ∗G = 1.344, γ∗Q = 1.437)

and (γ∗R = 1.18, γ∗G = 1.31, γ∗Q = 1.10) are equivalent in the sense that they lead to the same
design (i.e. same W ) and the same reliability index (i.e. β = βt = 4.2) for l = 6m.
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Calibration of partial safety factors for different scenarios

In general, the optimized p.s.f. obtained above using the FORM sensitivity factor method result
in a reliability β 6= βt, for a beam span l 6= 6 m, cf. Figure 8. This is due to the fact that
the fraction of the external moment induced by G (or Q) changes with the beam span. The
reliability for l = 6 m is equal to the target, since that was the condition imposed for calibration.
The reliability index is therefore dependent on the beam span (or equivalently the ratio between
the moments induced by G and Q), i.e. β = β(γR, γG, γQ, l).

10 15 20 25 30
4

4.05

4.1

4.15

4.2

4.25

Figure 8: Reliability index of the beam designed with p.s.f optimized for l = 6 m.

In order to get a constant reliability, i.e. independent of the geometry, a new set of p.s.f should
be calibrated for each beam length, see Figure 9. This is not practical and not implemented in
design codes. The problem is solved by finding the set of p.s.f which ensures the reliability to
be as homogeneous as possible over a range of possible scenarios. The set can be obtained by
solving the minimization problem in Eq. (26).

10 15 20 25 30
0.9

1

1.1

1.2

1.3

1.4

Figure 9: Partial safety factors giving constant reliability, calibrated with FORM α-method
giving β = βt = 4.2.
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min
γ∗R,γ

∗
G,γ

∗
Q


n∑
i=1

(βt − βi(γR, γG, γQ, li))2

 (26)

The set of p.s.f obtained is (γ∗R = 1.08, γ∗G = 1.38, γ∗Q = 1.35). The corresponding reliability
is plotted in Figure 10.

10 15 20 25 30
4

4.05

4.1

4.15

4.2

4.25

Figure 10: Comparison of the reliability index for p.s.f. calibrated for l = 6 m and for different
scenarios simultaneously (βopt).

E-1.2.2. Global partial safety factor

An alternative (and older) format of semi-probabilistic design equations makes use of the global
safety factor (SF ). The design equation with the global safety factor applied on the mean values
reads:

WµFm

µG
l2

8
+ µQ

l

4

> SF (27)

where the numerator is the mean value of the moment resistance and the denominator is the
mean value of the action induced moment.

The minimum cross-section plastic modulus satisfying Eq. (27) is:

Wmin =
SF

µFm

(
µG

l2

8
+ µQ

l

4

)
(28)

Calibration of the global safety factor for a given span

As before, SF can be calibrated so that Eq. (28) provides a design with the target level of risk.
The limit state function in Eq. (17) is rewritten with W = Wmin:

g(fm, g, q) =
SF

µFm

(
µG

l2

8
+ µQ

l

4

)
· fm − g

l2

8
− q l

4
≤ 0 (29)
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Consequently Eq. (18) becomes:

β =

SF

µFm

(
µG

l2

8
+ µQ

l

4

)
µFm − µG

l2

8
− µQ

l

4√(
SF

µFm

(
µG

l2

8
+ µQ

l

4

)
σFm

)2

+

(
σG
l2

8

)2

+

(
σQ

l

4

)2
(30)

where it is clear that the reliability of the design is depending on the global safety factor, i.e.
β = β(SF ).

The global safety factor is calibrated by setting β(SF ) ≡ βt. As an example, considering
l = 6 m, the calibrated global safety factor is found with numerical minimization in Matlab© to
be SF ∗ = 2.51, giving W = 300610 mm3.

Calibration of the global safety factor for different scenarios

As before, the design performed with the calibrated SF for l = 6 m results in a different relia-
bility for different spans. The SF can be calibrated so to give a reliability as homogeneous as
possible over the different design scenarios. Therefore, as previously, the SF can be calibrated
by solving a minimization problem, cf. Eq. (31). The optimized SF obtained is SF ∗ = 2.20,
see Figure 11.

10 15 20 25 30
3.5

4

4.5

5

5.5

Figure 11: Reliability index for SF calibrated for l = 6 m (in blue) and for different scenarios
simultaneously (in green).

min
SF ∗


n∑
i=1

(βt − βi(SF ∗, li))2

 (31)

Comments

It can be observed from Figure 10 and Figure 11 that, by changing the SF the curve is only
shifted up and down while the three p.s.f. shift and distort the curve. This leads to higher levels
of optimization (i.e. a flatter curve) with p.s.f.. The values of

∑n
i=1 (βt − βi)2 show clearly this
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Figure 12: Comparison of β values for SF and LRFD formats before and after optimization.

differences in the two formats. In fact, after optimization
∑n

i=1 (βt − βi)2 = 0.026 for the p.s.f.
format and

∑n
i=1 (βt − βi)2 = 1.88 for the global safety factor format. The load and resistance

factor design method offers therefore a more homogenized level of safety.

4. Real Example
In the context of the revision of the Eurocode a calibration exercises was considered (in CEN

TC250/SC10/WG1) where the objective was to calibrate the load partial factors for wind load,
snow load and live load in buildings. In the following, some results of this exercise are presented.
The study is also published as Köhler et al. 2019.

4.1. Framework

The objective of the assessment of the safety factors of existing design codes is to confirm
their absolute magnitude and to evaluate whether a change of the safety factors would lead to a
better correspondence with the reliability requirements stated in the code. The key points of the
followed framework are:

• The assessment is formulated as a calibration problem, where the load partial factors γS
are the calibration variables.

• The objective of the calibration is the minimisation of variability of reliability levels in
the considered domain of design equations D. The corresponding objective function (to
be minimised) is

M(γS) =
∑
k∈D

wk (βk(γΓ30803)− βtarget)2 (32)

• The domain of design equations D is defined as all design equations for which the load
partial factors apply.

• The domain of design equations is represented by a reduced set of design equations repre-
senting the main structural materials and loads induced by wind and snow, and permanent,
sustained and intermittent actions. The importance of the different design equations is
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represented by the weighting factor wk Assumptions are made for the formulation of this
representative set.

• Design equations are represented in a partial factor design format as specified in the Eu-
rocodes and with the corresponding limit states. All load and resistance related variables
and model uncertainties are represented as random variables. Assumptions are made for
the specification of the random variables, whereas the Probabilistic Model Code of the
Joint committee on Structural Safety (JCSS2001) is used as the main reference.

• The target reliability level βtarget is defined as the average reliability level of the considered
set of design equations with the partial factors of the present Eurocode (EN1990:2002)
(CEN 2002).

4.2. Case Study Eurocodes

Published in 2002, the Eurocodes consist of 10 European Standards, EN 1990 - EN 1999,
providing a common basis for the design of buildings and other civil engineering struc-
tures (CEN 2002). In 2012 the European Commission issued a mandate (M/515 EN) for
a revision of the Eurocodes in order to amend and extend the scope. The revision is cur-
rently ongoing and part of it is the assessment of the load related partial factors that are
recommended by the Eurocodes by means of reliability based code calibration.

4.2.1. Method

Limit state function and design situations

g(X, pij) = pijΘR,iRi − (1− aQ)(aGGS + (1− aG)GP )− aQΘQ,jQj (33)

pij = max


γM,i

θRi,kri,k
{(1− aQ) [aGgS,kγGS + (1− aG)gP,kγGP ] + aQψ0,jγQθQj,kqj,k}

γM,i

θRi,kri,k
{(1− aQ) [aGgS,kζγGS + (1− aG)gP,kζγGP ] + aQγQθQj,kqj,k}


(34)

pij =
γM,i

θRi,kri,k
{(1− aQ) [aGgS,kγGS + (1− aG)gP,kγGP ] + aQγQθQj,kqj,k} (35)

A generic linear limit state function is formulated for assessing the load partial safety
factors. With the limit state function different structural materials and different variables
can be considered, i.e. in Eq. (33) the failure mode is dominated by a material property
Ri and the loads are the effects of the self-weight (GS), the permanent load (GP ) and one
variable load (Qj).

The design variable in Eq. (33) is determined by the design equations of CEN 2002 for
the material property i and the variable load j in Eq.(34) for “6.10ab” and in Eq. (35)
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Table 4: Stochastic models based on JCSS2001 ( *yearly maxima).

Random variable Distr. type Mean(µ) COV Ch. Fract.(value)
Resistance model unc. (steel) ΘR,1 Logn. 1.00 0.05 (µ)
Resistance model unc. (concrete) ΘR,2 Logn. 1.00 0.10 (µ)
Resistance model unc. (rebar) ΘR,3 Logn. 1.00 0.10 (µ)
Resistance model unc. (glulam) ΘR,4 Logn. 1.00 0.10 (µ)
Resistance model unc. (solid timber) ΘR,5 Logn. 1.00 0.10 (µ)
Resistance model unc. (masonry) ΘR,6 Logn. 1.16 0.175 (µ)
Mat. property (steel yielding strength) R1 Logn. 1.00 0.07 (µ− 2σ)
Mat. property (concrete compr. capacity) R2 Logn. 1.00 0.15 0.05
Mat. Property (rebar yielding strength) R3 Logn. 1.00 0.07 0.05
Mat. property (glulam bending strength) R4 Logn. 1.00 0.15 0.05
Mat. property (solid timber bending strength) R5 Logn. 1.00 0.20 0.05
Mat. property (masonry compr. strength) R6 Logn. 1.00 0.16 0.05
Self-weight (steel) GS,1 Norm. 1.00 0.04 0.50
Self-weight (concrete) GS,2 Norm. 1.00 0.05 0.50
Self-weight (rebar) GS,3 Norm. 1.00 0.05 0.50
Self-weight (glulam) GS,4 Norm. 1.00 0.10 0.50
Self-weight (solid timber) GS,5 Norm. 1.00 0.10 0.50
Self-weight (masonry) GS,6 Norm. 1.00 0.065 0.50
Permanent load GP Norm. 1.00 0.10 0.50
Permanent load (large COV) GP,v Norm. 1.00 0.20 0.95
Wind time-invariant part ΘQ,1 Logn. 0.79 0.24 (1.095)
Snow time-invariant part ΘQ,2 Logn. 1.00 0.30 (µ+ σ)
Imposed load model uncertainty ΘQ,3 Logn. 1.00 0.10 (1.00)
Wind mean reference velocity pressure* Q1 Gumb. 1.00 0.25 0.98
Snow load on roof* Q2 Gumb. 1.00 0.40 0.98
Imposed load* Q3 Gumb. 1.00 0.53 0.98

Table 5: Material properties, weights and ranges of variations of aG and aQ.

i Mat. property wR,i
(weight) aG range aQ range γM,i recommended

in current Eurocodes
1 Structural steel yield strength 40% 6*[0.6; 1.0] [0.2; 0.8] 1.00
2 Concrete compressive strength 15% [0.1; 0.7] 1.50
3 Re-bar yield strength 25% [0.1; 0.7] 1.15
4 Glulam timber bending strength 7.5% [0.2; 0.8] 1.25
5 solid timber bending strength 2.5% [0.2; 0.8] 1.30
6 Masonry compression strength 10% [0.1; 0.7] 1.50

for “6.10”. Six material properties listed in Table 5 are considered. Wind (j = 1), snow
(j = 2) and imposed (j = 3) loads are considered.

The notation, the random variables and the probabilistic models are reported in Table
4 and Table 5. aQ is a parameter representing different proportions between variable and
permanent loads (aQ = 1 for variable load only). Ten equally spaced and equally weighted
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Table 6: Results of the calibration.

Eq. (34) / (6.10a&b in Eurocodes) Eq. (35) / (6.10 in Eurocodes)
Eurocode values Calibrated values Eurocode values Calibrated values

γR,EC γR,EC = [1.00, 1.50, 1.15, 1.25, 1.30, 1.50]
γGS 1.35 1.18 1.35 1.15
γGP 1.35 1.23 1.35 1.22
ζ 0.85 0.85 / /
γQ1 (wind) 1.50 1.62 1.50 1.63
γQ2 (snow) 1.50 1.59 1.50 1.64
γQ3 (imposed) 1.50 1.62 1.50 1.65

values in the ranges reported in Table 5 are considered. aG is a parameter representing
different proportions between permanent load and self-weight (aG = 1 for self-weight
only). Three equally spaced and equally weighted values in the ranges reported in Table
5 are considered.

4.2.2. Assessment Strategy

Safety level of the existing EN1990 The assessment of the reliability level of the present
Eurocodes design equations, i.e. format and partial factors according to CEN 2002 is as-
sessed first. The weighted average reliability index of a domain D of design equations
representing 6 material resistances, 3 different dominant variable loads, 3 different per-
manent load proportions and 10 different relative proportions of variable load relative to
the total load, i.e. the weighted average from 6 x 3 x 3 x 10 = 540 design equations is
computed in Eq.

E [βEC ] = C
∑
k∈D

wkβk (γEC) (36)

C is a normalisation constant equal to one divided of the sum of all weights wk. Indepen-
dent from the detailed assumptions taken, the pattern as shown in Figure 13 is observed
when assessing the safety level of the existing Eurocodes. The following aspects are indi-
cated by Figure 13 :

– The scatter of the reliability level considering all design equations is large.

– There is higher variability of the reliability level between materials than within a
material for different loads.

– The computed average reliability levels are significantly lower than the reliability
target in EN 1990:2002 that is βtarget,EC = 4.7 for the yearly reference period.

Calibration of the load partial factors The calibration is performed with the objective to
reduce the variability of reliability indexes. As only the load factors are subject to cali-
bration, it is suggested to consider the weighted average yearly reliability associated to the
Eurocode recommended reliability elements as a reliability target, i.e. as determined with
Eq. (36) as βtarget = E [βEC ].
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Figure 13: Magnitude and variability of the estimated yearly reliability indexes: situation with
recommended safety factors given in EN1990 (CEN 2002)

The calibrated load partial safety factors are identified by solving the following minimisa-
tion problem over the domain of considered design equations D:

γS,opt = arg min
γS

∑
k∈D

wk(βk(γS,γR,EC)− βtarget)2 (37)

where γS,opt = [γGS, γGP , γQ1, γQ2, γQ3] are the load partial factors that are calibrated;
γR,EC are the material partial factors that are not calibrated (they are fixed to the values
reported in Table 5).
The results of the calibration for the design equations corresponding to Eq. (34) and Eq.
(35) ( equations 6.10a&b and 6.10 in the Eurocodes correspondingly) are listed in Table
6.

The results show that the safety factors for permanent actions are lower than the present
value but relative similar for self-weight and permanent load and also similar for Eurocode
equations 6.10 and 6.10 ab. For variable load it can be seen that all safety factors have
similar values for different loads and also for Eurocode equations Eq. 6.10 and 6.10 ab.
The resulting effect on the reliability indexes is illustrated in Figure 14.

The following observations can be made:

– By calibration of the load factors the variability of reliability indexes can be reduced.

– Also the variability within the different materials can be reduced considerably.

– The variability in between the materials is unaffected by the calibration of the load
factors. This confirms that the resulting partial factors are insensitive to the simplistic
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Figure 14: Magnitude and variability of the estimated yearly reliability indexes: comparison
of the safety factors of EN1990 (blue) with the case where the load factors are calibrated (red).
(Analysis based on Eq. 6.10 of EN 1990:2002 (CEN 2002).

representation of material resistance.

– This variability can only be reduced by calibration of the material factors.

4.3. Conclusion

The presented framework for the assessment and calibration of existing semi-probabilistic
design codes. A case study was introduced for the calibration of the load safety factors of
the Eurocodes. Conditional on the assumptions, the study indicates that:

– it is not necessary to distinguish two types of permanent loads in the safety concept;

– it is reasonable to apply the same safety factor to all variable loads considered in this
study;

– the existing partial factors seem too high for permanent loads;

– the existing partial factors seem too low for variable loads;

– the reliability target in the existing Eurocodes is higher than the average reliability
level implied by the current safety factors.

For thew continuation of the study, the load partial factors should be included in the cal-
ibration. This would be done by fixing the partial load factors to the ones obtained in
the presented study and calibrate the partial resistance factors per relevant material. This
implies a representation of load bearing capacity on a higher level of detail and with due
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consideration of the existing expertise and literature that is available for the corresponding
materials.
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