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» General performance criteria for the build
environment

» Self-contained approach to assess performance
» Simplification = Generalisation

» How safe is safe enough? => A calibration problem!
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The build environment

> As the main contributor to our societal
development,

» And, as a major consumer of natural resources,

» Needs proper strategies for decision support for
further development and maintenance !!

» Obijective: sustainable development.
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Strategy

> Decisions are made

» It is not how we can identify the right decision,
but how we identify the “best” decision

> Reasonable to assess the effect of different
decision alternatives on “our” utility
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Formal Decision Theory

Actions State Utility
acA 0co u(.)
What can | know? What should | do? What may | hope?

» Reasonable strategy

» Challenging to apply
» Simplifications necessary
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System definition

» Reduction and simplification
» Decision alternatives <2 utility

LT

Experiment Sample * State Utility
ecE z€EZ acAi 0eco ul)




Structural design decision problem

» Objective: minimum use of resources over time

Material
Resistance R

VIV

Design
parameter p.

External )\
actionQ — -

[\ Consequences
— N— H




Structural design decision

Move by | Designer Chance Utility
Eé[ —Cé{ W— u(b,h,c,,q,r|pc)

Choices p.€P beB he H c, eC, qgeQ reRr

Measure - /3 S / G /. 0 I

Pcopt —argmax {Eolu(0,p.)]} = argmin{Eg[C;(: (0, p) ]}
Pc Pc

EelCtot(0,pc)] = (E[Col + E[C1]pc) — E[H]Pr(Pc)

Pr(pe) = j fro(r,q)dr dq

pcr<q
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Risk informed decision

Design
parameter p,

External  /\
actionQ — A

Costs

Material
Resistance R

m&,ﬁ@}

Risk associated with
failure = P¢(p.) - H

Expected costs
Cc(pe) + Pe(pe) - H

Constr.
Costs

CC(pc)
A

>

Pf(pc,opt) - Pf,opt




Generalization of the risk informed design problem

Designer Chance Utility
E< M ’/(%—— u(g | pc)
p. P 6, € O, 0, €0, 0, € O, 6, €0,
Choices
0=|6,.6,...6, |0
Measure - Jop. (0|P.=p.)

- J
Yo

“State of the world” Variables
Not known with certainty by the decision

maker

Decision variable

Level of detail
sensibly chosen!

Pcopt —argmax {Eolu(@|pc)]}
Pc




Simplified design methods

Approaches: Simplifications: Objective:

Risk-informed

Decisions taken considering full risk None Mininfise use of societal resources |

(Level 4 design ) o Gl \%
Rel.ii_‘bilit}"bas‘fd - Avoid explicit evaluation of I
Decisions taken with reliability failure cosnequences/ safety Target reliability index or Pf

requirement to fulfil (Level 3 and 2 design)  osts etc.

Semi-probabilistic

Safety format prescribing the design Avoid explicit evaluation of Partial safety factors, modification
equations and/or analysis for failure cosnequences/ safety factors, load reduction factors etc. //
assessing decisions (Level 1 design) costs etc. AND avoid

reliability analyses

N
R\

N‘ Reliability elements in standards:
Application domains

Reliability-based calibration

Risk-based calibration
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Simplified design and assessment of
decision approaches [ISO 2394]

* Level 4: Risk-informed
> Simplification

* Levels 3 (and 2): Reliability-based




Reliability based design (Level 3 and 2)

Design:
Pc: Pf(pc) = Pf,target

Level 3 = Level 4 & Py 1arget=Pr opt




Code calibration, why?

e Simplification:

1. No explicit evaluation of costs, consequences, etc - simplify
calculations

Steel
yield \R‘
Timber Jl
tension

par. to 11

grain ATL(
C%ncrete}ﬂ 11

compr.
strength




Code calibration, why?

e Simplification:

1. No explicit evaluation of costs, consequences, etc - simplify
calculations
Steel E
C
yield \R‘ [c]
Timber
tension Jl
par. to ﬂ
grain .
L.
I} } ‘ P Py
Concrete 11 11 Pt opt,... Pt opt,2
compr. Pf,opt,l

strength




Code calibration, why?

e Simplification:

1. No explicit evaluation of costs, consequences, etc - simplify
calculations
Steel E
c
yield \R‘ [c]
Timber
tension Jl
par. to 11
grain .
Concrete 11 11 Pt opt,... Pt opt,2
compr. Pf opin
strength o

- simplify standards

2. One Priarget for a class of structures and calculations

CALIBRATION: what Py 14, 4¢¢ is optimal for the class?
1 ® NTNU




Code calibration as a decision problem under risk

* Decision variable: B¢qrget for Level 3 and 2 design

e each structure in the class defined by 6
* present and future structures

Events: 8]-
Failure
Obsolescence 'f ®%——eo @ 20—00—® s0—eo0—>
(Re)Construction t=0 Time

* Decision maker: society (codes guard the interest of society)

* Level of detail in system representation consistent with the
generalisation over classes




Optimisation of 3, for Level 3 codes

Move by

Choices

Measure

19

Game between Code writer and Chance

h W N R

unknown
-

Code writer

<

pL <R

Code writer selects a (¢

o, EA

.

4

d =[51._c32.....§"5 J e Ale3)

~\
Chance

—&

o,, € Ans

J

Designer

-

p.(8]80)eP,

Prob.=1

=

Designer finds dimensions p. giving f = [
Chance chooses a state of the nature 8 € @X€v3)

7

e.g. limit state, variables

6 €0, ’

0=[6.6,...6, |c0™

J

~
Chance

’ 6, <O,

J

Chance chooses a possible structure to be designed § € Aev3)

Utility

~—11(0|pc(3|ﬂm))

e.g. realisation of variables
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Optimisation of 8, ; for Level 3 codes

Game between Code writer and Chance

Code writer selects a (¢

1
2. Chance chooses a possible structure to be designed 8§ € A(¢v3)
3

Designer finds dimensions p. giving f = [
4. Chance chooses a state of the nature 0 € @(L€v3)

Known and accounted in design /\ /\ unknown
)

Move by

Choices

Measure

20

@ .
Code writer

L

pL <R

Chance

o € Al o,, € AN.;

8=[6,.6,.....5, | e AL

J

Designer

-

p.(8]80)eP,

Prob.=1

7

e.g. limit state, variables

Chance

6, €0, ’
0=[6.6,...6, |c0™

’ 6, <O,

~\

J

Utility

~—11(0|pc(3|ﬂm))

e.g. realisation of variables
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Current target reliability values in JCSS PMC
and ISO 2394

* Based on monetary optimization

Failure consequences

Minor Moderate Large

Large 3.1 (Pf ~ 10_3) 3.3 (Pf ~5. 10_4) 3.7 (Pf = 10_4)

Relative cost

~ —4 ~ -5 ~ . -6
of safety Normal 3.7 (Pr = 1077) 42 (Pr~107>) |44 (Pr~5-107°)

Small 42 (Pr ~1075) |44 (P, ~=5-107%) | 4.7 (P; ~ 107%)
f f f

* Risk optimisation philosophy included by differentiation of consequences
and cost for safety.

* Differentiation is coarse - > consistent with level of information.

e But qualification into classes is difficult.




Background Reliability Target Table

e Objective function

E [Ctot (p)] = Ceonstr (p) + E [Cy (p)] % + E [Cobs (p)] %

)\P(la)
f (p) n

8

— [Co + C1p + [Co + Cip + H] [Co+CIp+D]$

* Yearly probability of failure based on the simple R — §
problem.

* The variability of R and S chosen such that it represents the
characteristics of a class of structures.




Background Reliability Target Table

* Optimisation

d )\P(la)
dp{C()—FC[p-F[CO—FCIp'I-H] f,-), (p) +

=0

p=p*

[Cy + Crp + D) f‘;}

p=p*

la * w
:¢_Cl)+-CUP*4-fY__ 14'}§ )(p )%'+'?

Cr _api'(p)

1
dp 0
p=p*

Cr-(y+w) _ dPf (p")

* Reordering and simplification: ~
Co + H dp




Plot representing target reliabilities

6 |

Line satisfying the condition at

/ optimum

Cr-(v+w) _ 4P (p)
Co+H dp

p=p*

for:
COVp = 0.15 and COV5 = 0.30

ﬁ(1a2.5 - =
5L i
.5 A |
4L i
351 -
3 - -
25 L L
4 6 3 10 12 14 16
(_Co+H
n
Cl(y(la) + (,()) \

Safety costs;

Failure costs;

Interest rate y;
Obsolescence rate w.




Plot representing target reliabilities

(o] T T T T

Different types of uncertainties

T

B(la3_5 V_=0.05V _=0.1
— — _V_=0.05V_=03
.......... V_=0.05,V =045
_____ V_=0.05,V =0.6
V=0.15V =0.1
— V=015V =03

.......... V=015,V =045

I I
Ly U U0

ﬁ(la)

opt 45T

=
55

N
%)

V_=0.3,V_=0.1
— — —V_ =03, VS=0.3

3.5

x =

2.5

Co+H Safety costs;

In C,(y0D ¥ ) \ Failure costs;

Interest rate y;
Obsolescence rate w.




Life Safety

The reliability requirement, so far, was based on optimisation.

Our societal preferences for life safety can not be related to
potential benefit of a economic endeavour!

On the other hand, additional reliability is obtained by
investing more monetary means.

Societal willingness to pay (SWTP): How much can a society
invest to reduce the fatality rate in structures?




Life Safety — modified objective

AP (p)
Y

d
dp{Co-l—CIp-l- N SWTP —I—[CO—I—CIp-I—D]:}

* Correspondingly it has to be invested at least:

dp\®
_aly (p) < Cr(vs +w) _ K,

dp — SWTP- Np

p=p*



Plot representing target reliabilities

ﬁ(la;_5 Different types of uncertainties
5
(1a)
’BOPt 4.5 F
4
(1a); s
acc
3
2'54 <15 ) ;r 110 ;12 114 Il6
, SWTP - Ng Co+H Safety costs;
n C (y(la) N a)) In C,(yD + o) <« Failure costs;
I'\'s Interest rate y;
'\ Obsolescence rate w.

Marginal Lifesaving Cost Principle with Life Quality Index
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Summary

* Determination of target reliabilities for reliability based design
is a calibration problem

* Generalisation and classification requires “low” level of detail
of system representation

* Risk criteria can be in-cooperated

* Risk based design in open to any/(the appropriate) level of
detail.




Simplified design and assessment of
decision approaches [ISO 2394]

e Level 4: Risk-informed

Simplification

) Simplification

* Levels 3 (and 2): Reliability-based

* Level 1: Semi-probabilistic




Semi-probabilistic approach (Level 1)

Partial Safety Factors
(reliability elements)




Code calibration, why?

e Simplification:

1. No explicit evaluation costs, consequences, etc. - simplify
calculations

2. Noreliability analyses




Code calibration, why?

e Simplification:

1. No explicit evaluation costs, consequences, etc. - simplify

calculations
No reliability analyses

Steel

yield \R‘

Timber

tension

par. to'\ EI I I >
grain

1 } ‘ lec,(.)ptl,... Ps opt,2
Concrete 11 11 lpf,oz?t,l \

compr.
strength




Code calibration, why?

e Simplification:
1. No explicit evaluation costs, consequences, etc. - simplify

calculations
No reliability analyses

Steel
yield \R‘ ‘T‘l
Timber
tension

par. to

ﬂ } Pf,opt,... Pf:OPt:Z
Concrete 11 11 lpf,opt,l \

compr.
strength \ I
h np

- simplify standards
and calculations

CALIBRATION: what r is optimal for the class?
34 ® NTNU
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Decision problem

* Decision variable: r,; for Level 1 design for a class of
structures
— Partial safety factors
— Modification factors

— Load combination factors
Code

Move by Writer Chance Designer Chance Utility
E%//# \%_/—"ﬁ\\\*ér {4— “(0|p(‘(8|rel))
‘AI ‘ ‘ A".s pc(6|rel)epc ®1 ‘ ‘ G)"a
Choices | I, €R”
8=[8,65....., | € ALeb 0=(8.6,....6, |c @
Measure - fAIR,,-(6|rei) Prob. =1 fepc,ud,(ﬂlpc(ﬁlrd))

\/

e.g. type of structure




Simplified decision problem

1. Optimise B target

— Decision variables: B¢ target for Level 1 design for a class of

structures
Calibration of S

Code . -
Move by . Chance Designer Chance Utility

Writer

E%/@ o \‘é’,—/k\é’/ /{4\‘11(6|p(_(8|ﬂ£r|))
. v Al ‘ A"s pc(8|ﬂéT’)EP¢- G)l ‘ ‘ G)ne
Choices | D eR |
52[51.52 ..... c')'nj]EA'L""I' BZ[Q'HQ""'an]EGI‘m“

Measure - Tye (8157) Prob.=1 J opp.(aB.” (0lp.(31 7))

2. Reliability-based calibration

Lelopt: B(1e) as close as possible to ﬁc,target = ﬁc,opt
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Code Calibration Overview

Find N fulfilling
objective of maximizing
the expected utility

Select a code N (except reliability elements values r)

Select representative design

situations

Find r fulfilling the
objective of maximizing the
expected utility

Find g fulfilling the objective of maximizing the expected
utility

Target reliability f,

Find design points fulfilling

the objective f = S,
Minimize closeness

function varying r Find the “best” single

design point representing all
design points

N

opt

Lind’s decision-
theoretic approach

ropt rop! (ﬂt‘) ropt
Practical decision- Global optimization Approximate methods
theoretic approach method (GOM) (AM)

(for Level 1 and 3
norms)

(Only for Level 1 norms)

.

Reliability-based
code calibration




